CLICK HERE FOR BLOGGER TEMPLATES AND MYSPACE LAYOUTS »

Kamis, 27 November 2008

Penilitian Teknologi Informasi dan Komunikasi (kernel sebagai mediator antara aplikasi komputer dan perangkat keras)

Abstrak
Kernel adalah sebuah perangkat lunak yang membuat komunikasi / mediator antara aplikasi komputer dan perangkat keras, yang menyediakan pelayanan sistem seperti pengaturan memori untuk proses-proses yang sedang berjalan, pengaturan file-file, input-output terhadap dan dari suatu device dan masih banyak lagi fungsi tambahan yang lainnya. Intinya adalah kernel merupakan suatu penghubung (antara software dan hardware). Dalam makalah ini penulis mencoba untuk mengemukakan bagaimana cara kerja kernel sebagai sistem operasi, mengkompile ulang kernel untuk suatu kebutuhan, format dari kernel , serta berbagai dasar dasar kernel Linux sebagai aplikasi GPL (General Public License).

1. Pendahuluan
Kernel merupakan inti dari Operating System berisikan instruksi- instruksi yang bertindak sebagai mediator antara hardware dengan software. Kernel baru pada umumnya menawarkan dukungan yang lebih banyak terhadap berbagai jenis hardware,memiliki manajemen proses yang lebih baik, berjalan lebih baik dari versi sebelumnya, dan lebih stabil karena adanya perbaikan pada bug-bug yang ditemukan pada versi sebelumnya.

2. Format Kernel
Kernel sebagai jantungnya sistem operasi menyediakan format yang sesuai dengan kebutuhan anda. Sebelum kita memilih kernel sebaiknya kita dapat menentukan terlebih dahulu, kira-kira format kernel yang bagaimana yang sesuai dengan kebutuhan yang diinginkan. Sistem kernel ada berupa Modular dan Monolitik ,sebagai contoh jika sering gonta-ganti hardware, sistem kernel yang modular akan lebih cocok daripada sistem kernel yang builtin (monolitik). Kedua system ini mempunyai keuntungan dan kelebihan masing-masing,

2.1 Kernel Modular
Seperti pada kernel Linux mempunyai rancangan modular. Pada saat boot time, hanya minimal resident kernel yang di-load ke dalam memori. Ini di karenakan hanya modul-modul yang dibutuhkan saja serta di inginkan user yang akan diproses, sebuah modul kernel dapat secara dinamik di-load ke dalam memori. Kemudian secara periode spesifik modul tidak ingin di aktifkan maka modul dapat di hapus dari memori. Mekanisme dynamic loading ini dinamakan kmod. Dengan kata lain modul tidak akan di-load apabila tidak diinginkan dan modul akan di gunakan apabila di butuhkan. Salah satu keuntungan kernel yang bersifat modular, gonta-ganti hardware menjadi lebih mudah, karena tinggal menge-probe suatu modul, atau jika belum ada hanya tinggal mem-build satu modul saja. Kerugiannya adalah relatif rentan terhadapat masalah security, karena biasanya script kiddies memasukkan suatu modul ke dalam kernel (dengan harapan proses yang dimilikinya tidak diketahui oleh admin sistem yang bersangkutan)

2.2 Kernel buildin(Monolitik)
Dengan Kernel monolitik lebih baik dari segi security, sebuah kernel builtin (monolitik) akan relatif aman. Namun dari segi kemudahan, jika kita menambah atau mengganti suatu hardware, maka otomatis harus mengkompilasi ulang kernel .Namun demikian, skema kernel bagaimana yang lebih sesuai, itu bisa diklarifikasi sesuai kebutuhan dan implementasi sistem yang digunakan. Jika kernel monolitik ingin di jadikan modular, itu bisa dilakukan oleh dari kernel monolitik, dengan cara setelah konfigurasi ditetapkan dalam kernel monolitik dan di kompilasi maka dapat di ambil, bagian-bagian mana saja yang akan dipisahkan untuk dijadikan modul-modul.

3. Kompilasi Modul Kernel
Apabila kita akan menambahkan suatu modul ke dalam kernel maka kita dapat melakukan kompilasi ulang kernel. Modul merupakan bagian dari kode kernel yang tidak secara langsung dimasukan kedalam kernel. Modul dapat di masukan atau dihilangkan kedalam kernel yang sedang berjalan kapanpun diperlukan. Modul biasanya digunakan untuk mendukung pekerjaan yg tidak di gunakan terus-menerus. misal, jika kita tidak membutuhkan dukungan networking sepanjang waktu, seperti ppp,maka lebih baik ppp dijadikan sebagai modul. ketika kita memerlukannya (untuk koneksi ke isp) modul kita panggil dan setelah selesai koneksi modul dapat kita matikan. penerapan modul seperti ini akan mengurangi jumlah memori yang di butuhkan kernel sehingga mempercepat operasi.

3.1 Konfigurasi Kernel
Ada 3 command yang dapat digunakan untuk mengkonfigurasi kernel
1. config (text-based)
2. menuconfig (text-based menu)
3. xconfig (under X )
Diantara ketiga cara tersebut, yang biasa dipakai adalah “menuconfig“. karena memiliki tampilan yang lebih menarik dan lebih fleksibel dalam konfigurasi daripada cara pertama (config). Untuk memilih modul dalam menuconfig di tunjukan dengan tanda (dengan menekan tombol m pada keyboard), jika <> menandakan modul ini tidak digunakan. tanda < *> atau [*] (dengan menekan tombol y) digunakan untuk menyertakannya secara langsung kedalam kernel. Selama melakukan konfigurasi perubahan dapat dilakukan dengan ditandakan atau diberi tanda [*]. Apabila ada hal-hal tertentu yang memang benar-benar tidak dibutuhkan oleh konfigurasi komputer yang akan dipakai, tanda bintangnya di hapus (biar tidak terbawa disaat kompilasi berlangsung). Atau dapat melakukan penambahan penandaan sesuai kebutuhan, misal [*] untuk menggunakan modul, penandaan untuk kebutuhan networking dengan < *>.

Skema representatif antara “user space� dan “kernel space�

Gambar1. Skema representatif antara “user space� dan “kernel space�

Dalam gambar 1 garis yang menghubungkan berbagai komponen dengan kernel ( dengan peralatan perangkat keras ) mengindikasikan bahwa setiap komponen secara lansung berinteraksi. Seperti contoh TCP/IP stack mengirim paket jaringan melalui code path TCP atau UDP , tetapi kedua tipe paket ini ini pada akhirnya di handel oleh IP layer. Dalam gambar, “VFS” berada pada Virtual Filesystem layer, yang secara ringkas serta detail ada pada tipe filesystem (seperti sebagai ext2fs dan ISO-9660, seperti yang di tampilkan) dari aplikasi user. Ini maksudnya adalah bahwa aplikasi ini butuh tidak mengetahui apa tipe filesystem yang di akses bila sebuah file dibuka, dibaca, ditulis dan seterusnya. Sedangkan “IPC” merupakan Interprocess Communication dan termasuk bermacam-macam mekanisme proses untuk “berkomunikasiâ€? satu sama lainnya dalam aktivitasnya. Komponen yang berlabel “SMP” adalah shared-memory multiprocessing yang mendukung Linux-kernel,yang digunakan sistem dengan multiple CPUs.

3.2 Utilitas Modul
Berikut ini adalah utilititas yang dapat gunakan pada system operasi linux dalam menangani modul
1. lsmod digunakan untuk melihat modul yang telah di load. contoh: # lsmod
2. depmod digunakan untuk membuat dependency list modul-modul yang ada kepada sistem. contoh: # depmod -a
Bila anda tidak menjalankan perintah ini anda tidak dapat me-load modul. perintah “depmod -a” menghasilkan file /lib/modules/2.0.xx/modules.dep yang berisi daftar keterkaitan modul terhadap modul yang lainnya.
3. modprobe digunakan untuk load/unload modul ;contoh: # modprobe -r msdos.o –>untuk unload modul (menghapus) ;contoh: # modprobe msdos.o –> untuk load modul commandmodprobe msdos.o” bila dilihat dengan “lsmod” akan nampak seperti:
Module Pages Used by
msdos 2 0
fat 6 [msdos] 0
Perhatikan modul fat juga di-load, padahal perintah modprobe hanya diperintahkan untuk me-load modul msdos. hal ini terjadi karena adanya ketergantungan modul, modul msdos memerlukan modul fat.
File-file (modul) seperti msdos.o bisa dilihat di /lib/modules/2.0.xx/
4. kerneld merupakan daemon yang secara otomatis me-load dan unload modul. dengan menggunakan kerneld kita tidak perlu lagi menggunakan modprobe (untuk load/unload modul) secara manual karena daemon ini telah menanganinya secara otomatis. kita dapat mengecek apakah “kerneld” telah bekerja dengan baik.

4. Kernel Waktu Nyata
Banyak sistem embedded yang memiliki kebutuhan untuk berperilaku sebagai sebuah sistem waktu-nyata (real-time system). Pada sistem waktu nyata, waktu memegang peranan yang penting. Ketepatan kalkulasi atau kecermatan aksi tidak akan berarti apa-apa jika dilakukan pada saat yang keliru, atau “a late answer is a wrong answer�. Sistem waktu nyata lazim dijumpai di dunia industri. Sebagai contoh, pengatur arah peluru kendali mesti dapat mengoreksi laju dan arah terbangnya sehingga tetap menuju target. Keterlambatan sepersekian detik bisa mengakibatkan peluru tersebut nyasar ke ruang kosong. Dalam hal ini antisipasi secepat-cepatnya menjadi kunci akurasinya. Sebuah mesin otomatis untuk mengemas botol minuman harus dapat memasangkan tutup botol tepat kepada botolnya. Dalam sebuah sistem berjalan, ketepatan ini diatur dengan waktu. Dengan kata lain, jika waktu pemasangan tutup botol tidak tepat, hasilnya akan percuma karena botolnya tidak akan berada pada lokasi yang tepat. Salah satu hal penting yang diperhatikan pada saat merancang sistem waktu-nyata adalah deadline atau tenggat operasi yang diijinkan. Selama pemrosesan atau kalkulasi yang dilakukan dapat dipaksa untuk diselesaikan sebelum deadline tersebut lewat, maka sifat waktu-nyata sistem tersebut bisa dijamin. Sebagai ilustrasi, sebuah player MP3 harus dapat melakukan encoding musik format MP3 tersebut menjadi sinyal audio yang dinikmati melalui earphone atau speaker. Tentu saja, proses encoding tersebut harus lebih cepat dari alunan musiknya sendiri. Untuk kualitas HiFi, ini berarti encoding mesti mensuplai data audio sebanyak 44100 kali per detik. Bila memproses sepotong data audio menyita waktu lebih dari 1/44100 detik, musik tidak bisa didengar secara real-time. Bayangkan, bagaimana caranya menikmati sebuah lagu - yang durasi aslinya 4 menit – jika diputar selama 10 menit ? .Meskipun mulanya tidak dirancang sebagai sistem waktu nyata, Linux dapat ‘diakali’ sehingga dapat bekerja pada lingkungan yang mengharuskan persyaratan sistem waktu-nyata. Setidaknya, ada beberapa pendekatan yang bisa digunakan

Hubungan Sub-Kernel dengan linux

Gambar 2. Hubungan Sub-Kernel dengan linux

Sub-kernels dibuat dengan 3 kategori: 1) patching sebuah kernel linux untuk menyediakan beberapa keterkaitan seperti penambahan fungsionalitas 2) modifikasi untuk menghandel interrupt 3) membuat loadable modules untuk menyediakan bagian API dan fungsionalitas.

Sub-kernels menyediakan sebuah API untuk digunakan oleh tugas real-time. APIs menyediakan urutan yang menyerupai POSIX, fungsi POSIX lainnya dan penambahan fungsi yang unik. Penggunaan sub-kernels dimaksudkan bahwa tugas real-time menggunakan APIs yang lebih familiar bagi para programmer Linux , tetapi mereka menerapkan secara terpisah dan terkadang berbeda.

Interrupt handling dimodifikasi oleh patching bagian utama kernel . patch-nya sendiri merubah fungsi, seperti contoh , patch digunakan biasanya untuk disable interrupts. Apabila kernel dan drivers dalam sub-tree linux di recompiled, mereka tidak secara aktual untuk menghentikan interrupts. Karena drivers di-compile terpisah dari header yang dimodifikasi untuk disable- interrupts dan menghalangi teknik real-time. Sebaiknya gunakan non standard code untuk sebuah interrupt-disabling. Instruksi Bahasa assembly mungkin bisa digunakan untuk menanganinya. Dalam prakteknya hal ini merupakan situasi yang tidak terelakan untuk menangani solusi real-time.

5. Kesimpulan
Kernel merupakan mediator penghubung antara Software dan Hardware. Kernel dapat di-recompile ulang sesuai dengan kebutuhan perangkat keras yang ingin kita pakai, untuk me-recompile ulang kernel dapat di pilih apakah ingin menggunakan kernel Modular atau kernel Mololitik, dalam pemakaiannya kernel bergantung kepada pengguna sendiri modul apa yang akan digunakan. Kernel juga sangat baik digunakan sebagai real-time yang menjembatani aplikasi dan kebutuhan waktu nyata yang interrupt-nya dapat di ubah dengan modifikasi Header-nya menggunakan kernel-source-tree.

Selasa, 25 November 2008


Perkembangan TIK
Bila dilacak ke belakang, terdapat beberapa tonggak
perkembangan teknologi yang secara nyata memberi
sumbangan terhadap eksistensi TIK saat ini. Pertama adalah
temuan telepon oleh Alexander Graham Bell pada tahun 1875.
Temuan ini kemudian ditindaklanjuti dengan penggelaran
jaringan komunikasi dengan kabel yang melilit seluruh daratan
Amerika, bahkan kemudian diikuti pemasangan kabel
komunikasi trans-atlantik. Inilah infrastruktur masif pertama
yang dibangun manusia untuk komunikasi global. Memasuki
abad ke-20, tepatnya antara tahun 1910-1920, terealisasi
transmisi suara tanpa kabel melalui siaran radio AM yang
pertama (Lallana, 2003:5). Komunikasi suara tanpa kabel
segera berkembang pesat, dan kemudian bahkan diikuti pula
oleh transmisi audio-visual tanpa kabel, yang berwujud siaran
televisi pada tahun 1940-an. Komputer elektronik pertama
beroperasi pada tahun 1943, yang kemudian diikuti oleh
tahapan miniaturisai komponen elektronik melalui penemuan
transistor pada tahun 1947, dan rangkaian terpadu (integrated
electronics) pada tahun 1957. Perkembangan teknologi
elektronika, yang merupakan soko guru TIK saat ini,
mendapatkan momen emasnya pada era perang dingin.
Persaingan IPTEK antara blok Barat (Amerika Serikat) dan blok
Timur (eks Uni Sovyet) justru memacu perkembangan teknologi
elektronika lewat upaya miniaturisasi rangkaian elektronik untuk
pengendali pesawat ruang angkasa maupun mesin-mesin
perang. Miniaturisasi komponen elektronik, melalui penciptaan
rangkaian terpadu, pada puncaknya melahirkan mikroprosesor.
Mikroprosesor inilah yang menjadi ‘otak’ perangkat keras
komputer, dan terus berevolusi sampai saat ini.
Di lain pihak, perangkat telekomunikasi berkembang pesat saat
mulai diimplementasi-kannya teknologi digital menggantikan
teknologi analog yang mulai menampakkan batas-batas
maksimal
pengeksplorasiannya.
Digitalisasi
perangkat
telekomunikasi kemudian berkonvergensi dengan perangkat
komputer yang dari awal merupakan perangkat yang
mengadopsi teknologi digital. Produk hasil konvergensi inilah
yang saat ini muncul dalam bentuk telepon seluler. Di atas
infrastruktur telekomunikasi dan komputasi inilah kandungan isi
(content) berupa multimedia, mendapatkan tempat yang tepat
untuk berkembang. Konvergensi telekomunikasi-komputasi-
multimedia inilah yang menjadi ciri abad ke-21, sebagaimana
abad ke-18 dicirikan oleh revolusi industri. Bila revolusi industri
menjadikan mesin-mesin sebagai pengganti ‘otot’ manusia
maka revolusi digital (karena konvergensi telekomunikasi-
komputasi-multimedia terjadi melalui implementasi teknologi
digital) menciptakan mesin-mesin yang mengganti (atau
setidaknya meningkatkan kemampuan) ‘otak’ manusia.
Indonesia pernah menggunakan istilah telematika (telematics)
untuk maksud yang kurang lebih sama dengan TIK yang kita
kenal saat ini. Encarta Dictionary mendeskripsikan telematics
sebagai telecommunication+informatics
(telekomunikasi +
informatika) meskipun sebelumnya kata itu bermakna science
of
data
transmission.
Pengolahan
informasi
dan
pendistribusiannya melalui jaringan telekomunikasi membuka
banyak peluang untuk dimanfaatkan di berbagai bidang
kehidupan manusia, termasuk bidang pendidikan. Ide untuk
menggunakan mesin-belajar, membuat simulasi proses-proses
yang rumit, animasi proses-proses yang sulit dideskripsikan,
sangat menarik minat praktisi pembelajaran. Tambahan lagi,
kemungkinan untuk melayani pembelajaran yang tak terkendala
waktu dan tempat, juga dapat difasilitasi oleh TIK. Sejalan
dengan itu mulailah bermunculan berbagai jargon berawalan e,
mulai dari e-book, e-learning, e-laboratory, e-education, e-
library dan sebagainya. Awalan e- bermakna electronics yang
secara implisit dimaknai berdasar teknologi elektronika digital.

SMPN 1 Denpasar

Sekolah ini terletak Jl. Surapati No. 2, Denpasar. SMPN 1 Denpasar merupakan salah satu Sekolah Bertaraf Internasional di Indonesia, dan juga salah satu sekolah tertua di Bali. Walaupun sudah menjadi Sekolah Bertaraf Internasional, namun sarana-prasarana pembelajaran di sekolah ini belum begitu lengkap atau belum merata. Luas sekolah ini juga belum mendukung kegiatan pembelajaran Sekolah Bertaraf Internasional. Kondisi kebersihan di SMPN 1 Denpasar ini belum pantas untuk dibandingkan dengan sekolah lain di kota Denpasar. Jika dilihat dari prestasi akademis sekolah ini adalah yang nomor satu di Bali, juga dalam nilai rata - rata hasil UN. Hal ini menurut saya dikarenakan guru - guru maupun staff sekolah yang sangat ramah.  

Sejarah Komputer (bag. 5)

Generasi Kelima
  
Mendefinisikan komputer generasi kelima menjadi cukup sulit karena tahap ini masih sangat muda. Contoh imajinatif komputer generasi kelima adalah komputer fiksi HAL9000 dari novel karya Arthur C. Clarke berjudul 2001:Space Odyssey. HAL menampilkan seluruh fungsi yang diinginkan dari sebuah komputer generasi kelima. Dengan kecerdasan buatan (artificial intelligence), HAL dapat cukup memiliki nalar untuk melakukan percapakan dengan manusia, menggunakan masukan visual, dan belajar dari pengalamannya sendiri. 

Walaupun mungkin realisasi HAL9000 masih jauh dari kenyataan, banyak fungsi-fungsi yang dimilikinya sudah terwujud. Beberapa komputer dapat menerima instruksi secara lisan dan mampu meniru nalar manusia. Kemampuan untuk menterjemahkan bahasa asing juga menjadi mungkin. Fasilitas ini tampak sederhana. Namun fasilitas tersebut menjadi jauh lebih rumit dari yang diduga ketika programmer menyadari bahwa pengertia manusia sangat bergantung pada konteks dan pengertian ketimbang sekedar menterjemahkan kata-kata secara langsung. 

Banyak kemajuan di bidang desain komputer dan teknologi semkain memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model non Neumann. Model non Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi. 

Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia. Kita tunggu informasi mana yang lebih valid dan membuahkan hasil.

Sejarah Komputer (bag. 4)

Generasi Keempat
  
Setelah IC, tujuan pengembangan menjadi lebih jelas: mengecilkan ukuran sirkuit dan komponenkomponen elektrik. Large Scale Integration (LSI) dapat memuat ratusan komponen dalam sebuah chip. Pada tahun 1980-an, Very Large Scale Integration (VLSI) memuat ribuan komponen dalam sebuah chip tunggal. 

Ultra-Large Scale Integration (ULSI) meningkatkan jumlah tersebut menjadi jutaan. Kemampuan untuk memasang sedemikian banyak komponen dalam suatu keping yang berukurang setengah keping uang logam mendorong turunnya harga dan ukuran komputer. Hal tersebut juga meningkatkan daya kerja, efisiensi dan keterandalan komputer. Chip Intel 4004 yang dibuat pada tahun 1971 membawa kemajuan pada IC dengan meletakkan seluruh komponen dari sebuah komputer (central processing unit, memori, dan kendali input/output) dalam sebuah chip yang sangat kecil. Sebelumnya, IC dibuat untuk mengerjakan suatu tugas tertentu yang spesifik. Sekarang, sebuah mikroprosesor dapat diproduksi dan kemudian diprogram untuk memenuhi seluruh kebutuhan yang diinginkan. Tidak lama kemudian, setiap perangkat rumah tangga seperti microwave oven, televisi, dn mobil dengan electronic fuel injection dilengkapi dengan mikroprosesor. 

Perkembangan yang demikian memungkinkan orang-orang biasa untuk menggunakan komputer biasa. Komputer tidak lagi menjadi dominasi perusahaan-perusahaan besar atau lembaga pemerintah. Pada pertengahan tahun 1970-an, perakit komputer menawarkan produk komputer mereka ke masyarakat umum. Komputer-komputer ini, yang disebut minikomputer, dijual dengan paket piranti lunak yang mudah digunakan oleh kalangan awam. Piranti lunak yang paling populer pada saat itu adalah program word processing dan spreadsheet. Pada awal 1980-an, video game seperti Atari 2600 menarik perhatian konsumen pada komputer rumahan yang lebih canggih dan dapat diprogram. 

Pada tahun 1981, IBM memperkenalkan penggunaan Personal Computer (PC) untuk penggunaan di rumah, kantor, dan sekolah. Jumlah PC yang digunakan melonjak dari 2 juta unit di tahun 1981 menjadi 5,5 juta unit di tahun 1982. Sepuluh tahun kemudian, 65 juta PC digunakan. Komputer melanjutkan evolusinya menuju ukuran yang lebih kecil, dari komputer yang berada di atas meja (desktop computer) menjadi komputer yang dapat dimasukkan ke dalam tas (laptop), atau bahkan komputer yang dapat digenggam (palmtop). 

IBM PC bersaing dengan Apple Macintosh dalam memperebutkan pasar komputer. Apple Macintosh menjadi terkenal karena mempopulerkan sistem grafis pada komputernya, sementara saingannya masih menggunakan komputer yang berbasis teks. Macintosh juga mempopulerkan penggunaan piranti mouse. 

Pada masa sekarang, kita mengenal perjalanan IBM compatible dengan pemakaian CPU: IBM PC/486, Pentium, Pentium II, Pentium III, Pentium IV (Serial dari CPU buatan Intel). Juga kita kenal AMD k6, Athlon, dsb. Ini semua masuk dalam golongan komputer generasi keempat. 

Seiring dengan menjamurnya penggunaan komputer di tempat kerja, cara-cara baru untuk menggali potensial terus dikembangkan. Seiring dengan bertambah kuatnya suatu komputer kecil, komputerkomputer tersebut dapat dihubungkan secara bersamaan dalam suatu jaringan untuk saling berbagi memori, piranti lunak, informasi, dan juga untuk dapat saling berkomunikasi satu dengan yang lainnya. Komputer jaringan memungkinkan komputer tunggal untuk membentuk kerjasama elektronik untuk menyelesaikan suatu proses tugas. Dengan menggunakan perkabelan langsung (disebut juga local area network, LAN), atau kabel telepon, jaringan ini dapat berkembang menjadi sangat besar.

Sejarah Komputer (bag. 3)

Generasi Ketiga
  
Walaupun transistor dalam banyak hal mengungguli tube vakum, namun transistor menghasilkan panas yang cukup besar, yang dapat berpotensi merusak bagian-bagian internal komputer. Batu kuarsa (quartz rock) menghilangkan masalah ini. Jack Kilby, seorang insinyur di Texas Instrument, mengembangkan sirkuit terintegrasi (IC : integrated circuit) di tahun 1958. IC mengkombinasikan tiga komponen elektronik dalam sebuah piringan silikon kecil yang terbuat dari pasir kuarsa. Pada ilmuwan kemudian berhasil memasukkan lebih banyak komponen-komponen ke dalam suatu chip tunggal yang disebut semikonduktor. Hasilnya, komputer menjadi semakin kecil karena komponenkomponen dapat dipadatkan dalam chip. Kemajuan komputer generasi ketiga lainnya adalah penggunaan sistem operasi (operating system) yang memungkinkan mesin untuk menjalankan berbagai program yang berbeda secara serentak dengan sebuah program utama yang memonitor dan mengkoordinasi memori komputer.

Sejarah Komputer (bag. 2)

Generasi Kedua 
  
Pada tahun 1948, penemuan transistor sangat mempengaruhi perkembangan komputer. Transistor menggantikan tube vakum di televisi, radio, dan komputer. Akibatnya, ukuran mesin-mesin elektrik berkurang drastis. 

Transistor mulai digunakan di dalam komputer mulai pada tahun 1956. Penemuan lain yang berupa pengembangan memori inti-magnetik membantu pengembangan komputer generasi kedua yang lebih kecil, lebih cepat, lebih dapat diandalkan, dan lebih hemat energi dibanding para pendahulunya. Mesin pertama yang memanfaatkan teknologi baru ini adalah superkomputer. IBM membuat superkomputer bernama Stretch, dan Sprery-Rand membuat komputer bernama LARC. Komputerkomputer ini, yang dikembangkan untuk laboratorium energi atom, dapat menangani sejumlah besar data, sebuah kemampuan yang sangat dibutuhkan oleh peneliti atom. Mesin tersebut sangat mahal dan cenderung terlalu kompleks untuk kebutuhan komputasi bisnis, sehingga membatasi kepopulerannya. Hanya ada dua LARC yang pernah dipasang dan digunakan: satu di Lawrence Radiation Labs di Livermore, California, dan yang lainnya di US Navy Research and Development Center di Washington D.C. Komputer generasi kedua menggantikan bahasa mesin dengan bahasa assembly. Bahasa assembly adalah bahasa yang menggunakan singkatan-singakatan untuk menggantikan kode biner. 

Pada awal 1960-an, mulai bermunculan komputer generasi kedua yang sukses di bidang bisnis, di universitas, dan di pemerintahan. Komputer-komputer generasi kedua ini merupakan komputer yang sepenuhnya menggunakan transistor. Mereka juga memiliki komponen-komponen yang dapat diasosiasikan dengan komputer pada saat ini: printer, penyimpanan dalam disket, memory, sistem operasi, dan program. 

Salah satu contoh penting komputer pada masa ini adalah IBM 1401 yang diterima secara luas di kalangan industri. Pada tahun 1965, hampir seluruh bisnis-bisnis besar menggunakan komputer generasi kedua untuk memproses informasi keuangan. 

Program yang tersimpan di dalam komputer dan bahasa pemrograman yang ada di dalamnya memberikan fleksibilitas kepada komputer. Fleksibilitas ini meningkatkan kinerja dengan harga yang pantas bagi penggunaan bisnis. Dengan konsep ini, komputer dapat mencetak faktur pembelian konsumen dan kemudian menjalankan desain produk atau menghitung daftar gaji. Beberapa bahasa pemrograman mulai bermunculan pada saat itu. Bahasa pemrograman Common Business-Oriented Language (COBOL) dan Formula Translator (FORTRAN) mulai umum digunakan. Bahasa pemrograman ini menggantikan kode mesin yang rumit dengan kata-kata, kalimat, dan formula matematika yang lebih mudah dipahami oleh manusia. Hal ini memudahkan seseorang untuk memprogram dan mengatur komputer. Berbagai macam karir baru bermunculan (programmer, analyst, dan ahli sistem komputer). Industri piranti lunak juga mulai bermunculan dan berkembang pada masa komputer generasi kedua ini.

 

ShoutMix chat widget